Глава 8

Механические колебания и волны

§ 38

Гармонические колебания и их характеристики

Колебательными <u>называются движения или процессы</u>, которые характеризуются определенной повторяемостью во времени.

<u>Колебания называются</u> свободными <u>или</u> собственными, <u>если они совер-</u> <u>шаются за счет первоначально сообщенной энергии при последующем отсутствии</u> <u>внешних воздействий на колебательную систему</u>.

Гармонические колебания – <u>это колебания</u>, <u>при которых колеблющаяся</u> величина изменяется по закону синуса или косинуса.

$$x = A\cos(\omega_0 t + \varphi), \qquad (38.1)$$

где A – амплитуда колебаний, $(\omega_0 t + \varphi)$ – фаза колебаний, $\omega_0 = 2\pi v$ – круговая или циклическая частота, φ – начальная фаза колебаний.

$$T = \frac{2\pi}{\omega_0} -$$
период колебаний (38.2)

$$v = \frac{1}{T} -$$
частота колебаний (38.3)

Запишем первую и вторую производные от гармонически колеблющейся величины *x*

$$\frac{dx}{dt} = -A\omega_0 \sin(\omega_0 t + \varphi) = A\omega_0 \cos\left(\omega_0 t + \varphi + \frac{\pi}{2}\right), \qquad (38.4)$$
$$\frac{d^2x}{dt^2} = -A\omega_0^2 \cos(\omega_0 t + \varphi) = A\omega_0^2 \cos(\omega_0 t + \varphi + \pi).$$

Из уравнения (38.5) следует <u>дифференциальное</u> уравнение гармонических колебаний

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0, \qquad (38.6)$$

решением которого является уравнение (38.1).

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм.

(38.5)

Механические гармонические колебания

При совершении материальной точкой прямолинейных гармонических колебаний их можно представить в виде

$$x = A\cos(\omega_0 t + \varphi). \tag{39.1}$$

Согласно выражений (38.4) и (38.5), скорость v и ускорение a колеблющейся точки равны

$$\begin{cases} v = -A\omega_0 \sin(\omega_0 t + \varphi) = A\omega_0 \cos\left(\omega_0 t + \varphi + \frac{\pi}{2}\right) \\ a = -A\omega_0^2 \cos(\omega_0 t + \varphi) = A\omega_0^2 \cos(\omega_0 t + \varphi + \pi) \end{cases}$$
(39.2)

Сила F = ma, действующая на колебательную точку массой m, с учетом (39.1) и (39.2) равна

$$F = -m\omega_0^2 x$$

Кинетическая энергия материальной точки равна

$$T = \frac{mv^2}{2} = \frac{mA^2\omega_0^2}{2}\sin^2(\omega_0 t + \varphi)$$
(39.3)

или

$$T = \frac{mA^2\omega_0^2}{4} \left[1 - \cos 2(\omega_0 t + \varphi)\right].$$
 (39.4)

Потенциальная энергия точки, колеблющейся под действием силы F равна

$$U = \int_{0}^{x} F dx = \frac{m\omega_{0}^{2}x^{2}}{2} = \frac{mA^{2}\omega_{0}^{2}}{2}\cos^{2}(\omega_{0}t + \varphi)$$
(39.5)

ИЛИ

$$U = \frac{mA^2\omega_0^2}{4} [1 + \cos 2(\omega_0 t + \varphi)].$$
 (39.6)

Сложив (39.3) и (39.5), получим выражение для полной энергии

$$E = T + U = \frac{mA^2\omega_0^2}{2}.$$
 (39.7)

Из формулы (39.4) и (39.6) следует, что

кинетическая и потенциальная энергии изменяются с частотой 2 ω_0 , т.е. с частотой, которая в два раза превышает частоту гармонического колебания.

$$\langle T \rangle = \langle U \rangle = \frac{1}{2} E.$$

§ 40

Гармонический осциллятор.

Пружинный, физический и математический маятники

Гармоническим осциллятором <u>называется система</u>, <u>совершающая колебания</u>, <u>описываемые уравнением вида</u>

$$\ddot{x} + \omega_0^2 x = 0. (40.1)$$

Примером гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур.

1. Пружинный маятник – это груз массой m, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упру-<u>гой силы</u> $\vec{F} = -k\vec{x}$,

где k – коэффициент упругости или жесткость.

Уравнение движения маятника

$$m\ddot{x} = -kx$$

или

$$\ddot{x} + \frac{k}{m}x = 0.$$

Из уравнения (40.1) следует, что пружинный маятник совершает гармонические колебания по закону

$$x = A\cos(\omega_0 t + \varphi).$$

$$\omega_0 = \sqrt{\frac{k}{m}},$$
(40.2)

$$T = 2\pi \sqrt{\frac{m}{k}} \,. \tag{40.3}$$

Потенциальная энергия пружинного маятника равна

$$U=\frac{kx^2}{2}.$$

2. Физический маятник – это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела.

 $M = J\varepsilon = J\ddot{\alpha} = F_{\tau} \cdot l = -mgl\sin\alpha \approx -mgl\alpha \,.$

(40.4)

Уравнение (40.4) можно записать в виде

$$J\ddot{\alpha} + mgl\alpha = 0$$

или

$$\ddot{\alpha} + \frac{mgl}{J}\alpha = 0$$

Принимая, что

$$\omega_0 = \sqrt{\frac{mgl}{J}}$$

получаем уравнение

$$\ddot{\alpha} + \omega_0^2 \alpha = 0$$

решение которого примет вид

$$\alpha = \alpha_0 \cos(\omega_0 t + \varphi). \tag{40.6}$$

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{L}{g}}, \qquad (40.7)$$

где $L = \frac{J}{ml}$ – приведенная длина физического маятника.

3. Математический маятник – это идеализированная система, состоящая из материальной точки *m*, подвешенной на нерастяжимой невесомой нити, и колеблющейся под действием силы тяжести.

$$J = ml^2, (40.8)$$

$$T = 2\pi \sqrt{\frac{l}{g}} \,. \tag{40.9}$$

(40.5)

Приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.

§ 41

Сложение гармонических колебаний одного направления

и одинаковой частоты. Биения

Примером сложения колебаний одного направления является колебания шарика на пружине в качающемся на рельсах вагоне. Сложим гармонические колебания одного направления и одинаковой частоты, воспользовавшись методом вращающегося вектора амплитуды

$$\begin{cases} x_1 = A_1 \cos(\omega_0 t + \varphi_1) \\ x_2 = A_2 \cos(\omega_0 t + \varphi_2) \end{cases}$$

Уравнение результирующих колебаний будет иметь вид

$$x = x_1 + x_2 = A\cos(\omega_0 t + \varphi).$$
(41.1)

В выражение (41.1) амплитуда A и начальная фаза ϕ , соответственно, задаются соотношениями

$$\begin{cases} A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\varphi_{2} - \varphi_{1}) \\ tg\varphi = \frac{A_{1}\sin\varphi_{1} + A_{2}\sin\varphi_{2}}{A_{1}\cos\varphi_{1} + A_{2}\cos\varphi_{2}} \end{cases}$$
(42.2)

Таким образом, результирующие колебания будут совершаться в том же направлении, и их амплитуда будет зависеть от разности фаз ($\phi_2 - \phi_1$):

1.
$$\phi_2 - \phi_1 = \pm 2m\pi$$
 (*m* = 0, 1, 2, ...), тогда *A* = *A*₁ + *A*₂;

2.
$$\varphi_2 - \varphi_1 = \pm (2m+1)\pi$$
 (*m* = 0, 1, 2, ...), тогда $A = |A_1 - A_2|$.

Для практики особый интерес представляет случай, когда два складываемых гармоничных колебания одинакового направления мало отличаются по частоте.

Периодические изменения амплитуды колебаний, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.

Пусть амплитуды складываемых колебаний равны A, а частоты равны ω и $\omega + \Delta \omega$, причем $\Delta \omega \ll \omega$. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю

$$\begin{cases} x_1 = A\cos\omega t \\ x_2 = F\cos(\omega + \Delta\omega)t \end{cases}$$

Складывая эти колебания, и учитывая то, что

$$\frac{\Delta\omega}{2} << \omega,$$

найдем

Результирующее колебание x можно рассматривать как гармоническое с частотой ω , а амплитуда, A_{δ} которого изменяется по следующему периодическому закону

$$A_{\delta} = \left| 2A \cos \frac{\Delta \omega}{2} t \right|. \tag{41.4}$$

Частота изменения A_6 в два раза больше частоты изменения косинуса, (так как берётся по модулю), т.е. частота биений равна разности частот складываемых колебаний $\omega_6 = \Delta \omega$.

Период биений $T_{\rm 6} = \frac{2\pi}{\Delta\omega}$.

Любые сложные периодические колебания s = f(t) можно представить в виде

$$s = f(t) = \frac{A_0}{2} + A_1 \cos(\omega_0 t + \varphi_1) + A_2 \cos(2\omega_0 t + \varphi_2) + \dots + A_n \cos(n\omega_0 t + \varphi_n).$$
(41.5)

Такое представление сложных колебаний получило название разложение Фурье.

<u>Члены разложения, определяющие гармонические колебания с частотами</u> ω₀, 2ω₀, 3ω₀,... <u>называются</u> **первой (основной)**, <u>второй</u>, <u>третьей и т.д. гармоника-</u> <u>ми сложного периодического колебания</u>.

§ 42

Сложение взаимно перпендикулярных колебаний

Рассмотрим результаты сложения двух гармонических колебаний одинаковой частоты ω_0 , происходящих во взаимно перпендикулярных направлениях.

$$\begin{cases} x = A\cos\omega_0 t \\ y = B\cos(\omega_0 t + \varphi) \end{cases}$$
(42.1)

Уравнение траектории результирующего колебания находим путем исключения переменной *t*

$$\frac{x}{A} = \cos \omega_0 t ,$$

$$\frac{y}{B} = \cos(\omega_0 t + \varphi) = \cos \omega_0 t \cos \varphi - \sin \omega_0 t \sin \varphi .$$

Заменяя во втором уравнении $\cos \omega_0 t$ на x/A и $\sin \omega_0 t$ на $\sqrt{1-(x/A)^2}$, получаем после несложных преобразований уравнение эллипса

$$\frac{x^2}{A^2} - \frac{2xy}{AB}\cos\varphi + \frac{y^2}{B^2} = \sin^2\varphi.$$
 (42.2)

Если траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптическими поляризованными.

Ориентация осей эллипса и его размеры зависят от А, В и ф.

Рассмотрим некоторые частные случаи, которые представляют физический интерес

1) $\phi = m\pi$ ($m = 0, \pm 1, \pm 2, ...$). В данном случае эллипс вырождается в отре-

зок прямой

$$y = \pm \left(\frac{B}{A}\right) x, \qquad (42.3)$$

где знак плюс соответствует нулю и четным значениям *m*; минус – нечетным значениям *m*. Результирующие колебания являются гармоническими с частотой ω_0 , амплитудой $\sqrt{A^2 + B^2}$, которые совершаются вдоль прямой составляющей с осью *x* угол $\phi = arctg \left(\frac{B}{A} \cos m\pi \right)$. Эти колебания называются линейно поляри-

зованными колебаниями.

2) $\phi = (2m+1)\frac{\pi}{2}$ (m = 0, ±1, ±2, ...). В данном случае уравнение (42.2) при-

мет вид

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1.$$
(42.4)

Это уравнение эллипса, оси которого совпадают с осями координат, а полуоси равны соответствующим амплитудам. Кроме того, если A = B, то эллипс вырождается в окружность. Такие колебания называются циркулярно поляризованными колебаниями или колебаниями,

поляризованными по кругу.

Если частоты взаимно перпендикулярных колебаний не одинаковы, то замкнутая траектория результирующего колебания довольно сложна. <u>Замкнутые</u> траектории, прочерченные точкой, совершающей одновременно два взаимно пер-

<u>пендикулярных колебания</u>, <u>называются</u> фигурами Лиссажу. Форма этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рисунке показана такая фигура для отношения частот 1:2 и разности фаз $\pi/2$. Уравнения колебаний имеют вид

$$\begin{cases} x = A\cos\omega_0 t \\ y = B\cos\left(2\omega_0 t + \frac{\pi}{2}\right). \end{cases}$$
(42.5)

На следующем рисунке представлены фигуры Лиссажу для различных соотношений частот (указаны слева) и разностей фаз (указаны вверху).

Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, параллельными осям координат. По виду фигур можно определять неизвестную частоту по известной или определять отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу – широко используемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.

Затухающие колебания

Затухающими колебаниями называются колебания, амплитуда которых из-за потерь энергии реальной колебательной системы с течением времени уменьшается.

Рассмотрим линейную систему, – <u>идеализированную</u> реальную систему, <u>в</u> которой параметры, определяющие физические свойства системы в ходе процесса <u>не изменяются</u>.

Дифференциальное уравнение свободных затухающих колебаний линейной системы имеет вид

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \omega_0^2 x = 0, \qquad (44.1)$$

где x – колеблющаяся величина, $\delta = const - коэффициент затухания, <math>\omega_0$ – собственная частота свободных незатухающих колебаний той же колебательной системы при $\delta = 0$, которая называется собственной частотой колебательной системы.

Решение уравнения (44.1) имеет вид $x = A_0 e^{-\delta t} \cos(\omega t + \varphi),$ (44.2)

где $A = A_0 e^{-\delta t}$ – амплитуда затухающих колебаний, A_0 – начальная амплитуда, $\omega = \sqrt{\omega_0^2 - \delta^2}$ – частота затухающих колебаний. Уравнение (44.2) справедливо в случае малых затуханий ($\delta^2 \ll \omega_0^2$). Зависимость (44.2) показана на рисунке.

Промежуток времени $\tau = 1/\delta$, <u>в течение</u> которого амплитуда затухающих колебаний уменьшается в *е* раз называется временем релаксации.

 $T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\pi^2 + s^2}}$.

$$A = A_0 e^{-\delta t}$$

$$A_0 \frac{1}{x_0}$$

$$A_1 A_2 A_3$$

$$T = T$$

201

$$\sqrt{\frac{A(t)}{A(t+T)}} = e^{\delta T}$$
 – называется декрементом затухания.

$$\theta = \ln \frac{A(t)}{A(t+T)} = \delta T = \frac{T}{\tau} = \frac{1}{N_e}$$
 – логарифмический декремент затухания.

 N_e – число колебаний, совершаемых за время уменьшения амплитуды в e раз.

 $Q = \frac{\pi}{\theta} = \pi N_e = \frac{\pi}{\delta T_0} = \frac{\omega_0}{2\delta}$ – добротность колебательной системы (так как

 $\delta^2 << \omega_0$, тогда $T \approx T_0$).

Отметим, что при увеличении коэффициента затухания δ период затухающих колебаний растет и при $\delta = \omega_0$ обращается в бесконечность, т.е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда $t \to \infty$. Процесс не будет колебательным. Он называется апериодическим (см. рис.).

Автоколебания – это незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Примеры автоколебательных систем: часы, двигатели внутреннего сгорания и т.д.

§ 44

Вынужденные колебания

<u>Колебания</u>, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными колебаниями.

Уравнение вынужденных колебаний можно свести к линейному неоднородному дифференциальному уравнению:

$$\frac{d^2x}{dt^2} + 2\delta \frac{dx}{dt} + \omega_0^2 x = f_0 \cos \omega t \,. \tag{44.1}$$

Решение уравнения (44.1) будет иметь вид

$$x = x_1(t) + x_2(t) \,. \tag{44.2}$$

Первый член соответствует свободным затухающим колебаниям

$$x_1(t) = A_0 e^{-\delta t} \cos(\omega_1 t + \varphi_0),$$

где $\omega_1 = \sqrt{\omega_0 - \delta^2}$. Слагаемое (44.3) играет существенную роль только в начальной стадии процесса (при установлении колебаний). Через некоторое время после начала колебаний свободные колебания прекращаются $x \approx x_2(t)$ или

$$x = A\cos(\omega t - \varphi), \tag{44.4}$$

где

$$A = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}} - амплитуда вынужденных колебаний, (44.5)$$

$$\varphi = arctg \frac{2\delta\omega}{\omega_0^2 - \omega^2} - \phi$$
аза вынужденных колебаний. (44.6)

Рассмотрим зависимость амплитуды Aвынужденных колебаний от ω . Из равенства (44.5) следует, что зависимость имеет максимум. Чтобы определить ω_{pes} – резонансную частоту, т.е. частоту при которой амплитуда достигает максимума, продифференцируем (44.5) по ω и приравняем производную к нулю

$$A \\ \delta_{1} < \delta_{2} < \delta_{3} \\ \delta_{2} \\ \delta_{3} \\ \omega_{\text{pes}} \omega_{0} \\ \omega_{0}$$

$$-4(\omega_0^2-\omega^2)\omega+8\delta^2\omega=0.$$

Равенство истинно при $\omega = 0$; $\omega = \pm \sqrt{\omega_0^2 - 2\delta^2}$ т.е.

$$\omega_{\rm pe_3} = \sqrt{\omega_0^2 - 2\delta^2} \ . \tag{44.7}$$

<u>Явление резкого возрастания амплитуды вынужденных колебаний при при-</u> ближении частоты вынуждающих сил к частоте ω_{pes} называется резонансом.

При $\delta^2 \ll \omega_0^2 \omega_{\text{pes}} \rightarrow \omega_0$.

Резонансная амплитуда будет равна

$$A_{\rm pes} = \frac{f_0}{2\delta\sqrt{\omega_0^2 - \delta^2}} \, .$$

При $\delta^2 \ll \omega_0^2$

$$A_{\rm pes} = \frac{f_0}{2\delta\omega_0} = \frac{\omega_0 f_0}{2\delta\omega_0^2} = Q \frac{f_0}{\omega_0^2}$$

$$tg\phi = \frac{2\delta\omega}{\omega_0^2 - \omega^2}$$

§ 45

Волновые процессы. Продольные и поперечные волны

Колебания, возбуждаемые в какой-либо точке среды, распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колебаний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т.е. непрерывно распределенная в пространстве и обладающая упругими свойствами. <u>Процесс распространения колебаний в сплошной среде называется</u> волновым

процессом (или волной).

Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Типы волновых процессов:

- волны на поверхности жидкости;
- упругие волны;
- электромагнитные волны.

Упругие (или механические) волны – это механические возмущения, распространяющиеся в упругой среде.

(44.8)

Продольными волнами называют такие волны, в которых частицы среды колеб-

Поперечные волны – это волны, в которых частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны.

<u>Упругая волна называется</u> гармонической, <u>если соответствующие ей колебания</u> частиц среды являются гармоническими.

Расстояние между двумя ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ.

 $\lambda = vT$ или $v = \lambda v$,

где *T* – период, v – частота колебаний, v – скорость распространения волны.

<u>Геометрическое место точек, до которых доходят колебания в момент времени</u> *t* <u>называется</u> волновым фронтом.

<u>Геометрическое место точек</u>, колеблющихся в одинаковой фазе, называется волновой поверхностью.

§ 46

Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

Бегущими волнами называются волны, которые переносят в пространстве энергию. ξt ι λ

Выведем уравнение бегущей волны. На рисунке рассмотрим некоторую частицу среды B, находящуюся от источника колебаний на расстоянии x. Если колебания точек в плоскости x = 0, описывается

функцией $\xi(0,t) = A \cos \omega t$, то частица среды **B** колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на τ , так как для прохождения волной расстояния x требуется время $\tau = x/v$, где v – скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости x, имеет вид

$$\xi(x,t) = A\cos\omega(t - x/v), \qquad (46.1)$$

откуда следует, что $\xi(x,t)$ является не только периодической функцией времени, но и периодической функцией координаты. Уравнение (46.1) есть **уравнение бегущей волны**. Если плоская волна распространяется в противоположном направлении, то

 $\xi(x,t) = A\cos\omega(t+x/v).$

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси *x* в среде, не поглощающей энергию, имеет вид

$$\xi(x,t) = A\cos[\omega(t - x/\nu) + \varphi_0], \qquad (46.2)$$

где A = const – амплитуда волны, ω – циклическая частота волны, φ_0 – начальная фаза колебаний, определяемая в общем случае выбором начала отсчета x и t, $[\omega(t - x/v) + \varphi_0]$ – фаза волны.

Для характеристики волн используют волновое число

$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{vT} = \frac{\omega}{v}.$$
(46.3)

Учитывая (46.3), уравнению (46.2) можно придать вид

$$\xi(x,t) = A\cos(\omega t - kx + \varphi_0). \tag{46.4}$$

Используя формулу Эйлера $e^{i\alpha} = \cos \alpha + i \sin \alpha$, уравнение плоской волны можно записать в виде

 $\xi(x,t) = A e^{i(\omega t - kx + \varphi_0)},$

где физический смысл имеет лишь действительная часть.

Предположим, что при волновом процессе фаза постоянна, т.е.

$$\omega(t - x/v) + \varphi_0 = \text{const.} \tag{46.5}$$

Продифференцировав выражение (46.5) и сократив на ω , получим dt - dx/v = 0, откуда

$$\frac{dx}{dt} = v. ag{46.6}$$

Следовательно, скорость *v* распространения волны в уравнении (46.6) есть не что иное, как <u>скорость перемещения фазы</u> и ее называют **фазовой скоростью**.

Повторяя ход рассуждений для плоской волны, можно доказать, что **урав**нение сферической волны – волны, волновая поверхность которой имеет вид концентрических сфер, записывается как

$$\xi(r,t) = \frac{A}{r} \cos(\omega t - kr + \varphi_0), \qquad (46.7)$$

где r – расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/r. Уравнение (46.7) справедливо лишь для r, значительно превышающих размеры источника.

Из выражения (46.3) вытекает, что фазовая скорость

$$v = \frac{\omega}{k}.$$
(46.8)

Если фазовая скорость волн в среде зависит от их частоты, то это явление называется дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением – дифференциальным уравнением в частных производных

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$$

ИЛИ

$$\Delta \xi = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2},\tag{46.9}$$

где $v - \phi$ азовая скорость, $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 + \partial^2 / \partial z^2$ – оператор Лапласа. Решением уравнения (46.9) является уравнение любой волны. Для плоской волны, распространяющейся вдоль оси x, волновое уравнение имеет вид

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}.$$
(46.10)

§ 47

Принцип суперпозиции. Групповая скорость

Если среда, в которой одновременно распространяются сразу несколько волн, **линейна**, т.е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим **принцип суперпозиции** (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процес-<u>сов</u>.

Исходя из принципа суперпозиции и разложения Фурье любая волна может быть представлена в виде суммы гармонических волн, т.е. в виде волнового пакета, или группы волн. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства.

Рассмотрим простейший волновой пакет из двух распространяющихся гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем $d\omega \ll \omega$ и $dk \ll k$. Тогда

$$\xi = A_0 \cos(\omega t - kx) + A_0 \cos[(\omega + d\omega) - (k + dk)x] = 2A_0 \cos\left(\frac{td\omega - xdk}{2}\right) \cos(\omega t - kx).$$

Эта волна отличается от гармонической тем, что ее амплитуда

$$A = \left| 2A_0 \cos\left(\frac{td\omega - xdk}{2}\right) \right|$$

есть медленно изменяющаяся функция координаты x и времени t.

За скорость распространения этой негармонической волны (волнового пакета) принимают скорость перемещения максимума амплитуды волны, рассматривая тем самым максимум в качестве центра волнового пакета. При условии, что $td\omega - xdk = const$, получим

$$\frac{dx}{dt} = \frac{d\omega}{dk} = u.$$
(47.1)

Скорость *и* есть **групповая скорость**. Ее можно определить как скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет. Хотя выражение (47.1) получено для волнового пакета из двух составляющих, можно доказать, что оно справедливо в самом общем случае.

Рассмотрим связь между групповой и фазовой скоростями. Учитывая, что $\lambda = 2\pi/k$, получим

$$u = \frac{d\omega}{dk} = \frac{d(vk)}{dk} = v + k \frac{dv}{dk} = v + k \left(\frac{dv}{d\lambda}\frac{d\lambda}{dk}\right) = v + k \left(-\frac{\lambda}{k}\right)\frac{dv}{d\lambda},$$

ИЛИ

$$u = v - \lambda \frac{dv}{d\lambda}.$$
(47.2)

Из формулы (47.2) вытекает, что групповая скорость может быть как меньше, так и больше фазовой скорости в зависимости от знака $dv/d\lambda$. В недиспергирующей среде $dv/d\lambda = 0$ и групповая скорость совпадает с фазовой.

§ 48

Интерференция волн

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности.

<u>Волны называются</u> когерентными, <u>если разность их фаз остается постоянной во</u> времени, <u>и они имеют одинаковую частоту</u>.

При наложении в пространстве двух (или нескольких) когерентных волн в разных его точках наблюдается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками S_1 и S_2 , колеблющимися с одинаковыми амплитудами A_0 , частотой ω и постоянной разностью фаз. Тогда

$$\xi_{1} = \frac{A_{0}}{r_{1}} \cos(\omega t - kr_{1} + \varphi_{0}), \ \xi_{2} = \frac{A_{0}}{r_{2}} \cos(\omega t - kr_{2} + \varphi_{0}),$$

где r_1 и r_2 – расстояние от источника волны до рассматриваемой точки *B*, k – волновое число, φ_1 и φ_2 – начальные фазы обоих накладывающихся сферических волн. Амплитуда результирующей волны в точке *B* равна

$$A^{2} = A_{0}^{2} \left\{ \frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}} + \frac{2}{r_{1}r_{2}} \cos \left\{ k(r_{1} - r_{2}) - (\varphi_{1} - \varphi_{2}) \right\} \right\}.$$

Так как для когерентных источников разность начальных фаз $(\phi_1 - \phi_2) = const$, то результат наложения двух волн в различных точках зависит от величины $\Delta = r_1 - r_2$, называемой разностью хода.

В точках, где

$$k(r_1 - r_2) - (\varphi_1 - \varphi_2) = \pm 2\pi m \ (m = 0, 1, 2, ...),$$
(48.1)

наблюдается интерференционный максимум амплитуды результирующих колебаний $A = A_0/r_1 + A_0/r_2$. В точках, где

$$k(r_1 - r_2) - (\varphi_1 - \varphi_2) = \pm (2m + 1)\pi \ (m = 0, 1, 2, ...),$$
(48.2)

наблюдается интерференционный минимум амплитуды результирующего колебания $A = |A_0/r_1 - A_0/r_2|$. (m = 0, 1, 2, ...) называется соответственно порядком интерференционного максимума или минимума.

Условия (48.1) и (48.2) сводятся к тому, что

$$r_1 - r_2 = const.$$
 (48.3)

Выражение (48.3) представляет собой уравнение гиперболы с фокусами в точках S_1 и S_2 . Следовательно, геометрическое место точек, в которых наблюдается усиление или ослабление результирующего колебания, представляет собой семейство гипербол, отвечающих условию ($\phi_1 - \phi_2$) = 0. Между двумя интерференционными максимумами (на рисунке сплошные линии) находятся интерференционные минимумы (на рисунке штриховые линии).

§ 49

Стоячие волны

Стоячие волны – это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

$$\begin{cases} \xi_1 = A\cos(\omega t - kx) \\ \xi_2 = A\cos(\omega t + kx) \end{cases}$$
(49.1)

Сложив эти уравнения и учитывая, что $k = 2\pi/\lambda$, получим уравнение стоячей волны

$$\xi = \xi_1 + \xi_2 = 2A\cos kx \cos \omega t = 2A\cos \left(\frac{2\pi}{\lambda}x\right)\cos \omega t.$$
(49.2)

Из уравнения стоячей волны (49.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты ω с амплитудой $A_{cm} = |2A\cos(2\pi x/\lambda)|$, зависящей от координаты x рассматриваемой точки.

В точках среды, где

$$\frac{2\pi x}{\lambda} = \pm \pi m \ (m = 0, 1, 2, ...), \tag{49.3}$$

амплитуда колебаний достигает максимального значения, равного 2*A*. В тех точках среды, где

$$\frac{2\pi x}{\lambda} = \pm (m + \frac{1}{2})\pi \ (m = 0, 1, 2, ...),$$
(49.4)

амплитуда колебаний обращается в ноль.

<u>Точки, в которых амплитуда колебаний минимальна, называются узлами стоячей</u> волны.

<u>Точки</u>, <u>в которых амплитуда колебаний максимальна</u>, <u>называются</u> **пучностями стоячей волны**.

Из выражений (49.3) и (49.4) получим соответственно координаты пучностей и узлов

$$x_n = \pm m \frac{\lambda}{2} \ (m = 0, 1, 2, ...), \tag{49.5}$$

$$x_{y_{3,1}} = \pm (m + \frac{1}{2})\frac{\lambda}{2} \ (m = 0, 1, 2, ...).$$
(49.6)

Из формул (49.5) и (49.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны $\lambda/2$. Расстояние между со-

седними пучностью и узлом стоячей волны равно λ/4.

Все точки стоячей волны между двумя соседними узлами колеблются с разными амплитудами, но с одинаковыми фазами. По разные стороны от узла фаза отличается на π (противофаза).

Образование стоячей волны наблюдается при интерференции бегущей и отраженной волны. Если среда, от которой происходит отражение, менее плотная, то в месте отражения получается пучность (*a*), если более плотная – узел (*б*). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противоположных направлений.

В стоячей волне переноса энергии нет.

§ 50

Характеристики звуковых волн

Звуковыми (или акустическими) волнами <u>называются распространяющиеся в</u> упругой среде волны, обладающие частотами в пределах 16 – 20000 Гц.

v <16 Гц – инфразвуковые волны,

v > 20 кГц – ультразвуковые волны.

Звуковые волны в газах и жидкостях могут быть только продольными, а в твердых телах как продольными, так и поперечными.

Интенсивностью (или силой) звука <u>называется величина</u>, <u>определяемая средней</u> <u>по времени энергией</u>, <u>переносимой звуковой волной в единицу времени сквозь</u> <u>единичную площадку</u>, <u>перпендикулярную направлению распространения волны</u>.

$$I = \frac{W}{St}, \quad [I] = \frac{Bm}{M^2}.$$

Для каждой частоты существует наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивность

звука, которая способна вызвать звуковое восприятие. Еще одной характеристикой звуковых волн является **громкость звука**, которая связана с его интенсивностью и зависит от его частоты. С ростом интенсивности громкость звука возрастает по логарифмическому закону

$$L = \lg(I/I_0),$$

где I_0 – интенсивность звука на пороге слышимости, принимаемая для всех звуков $I_0 = 10^{-12}$ Вт/м². Величина *L* называется **уровнем интенсивности звука** и выражается в **белах** (децибелах, дБ – $L = 10 \log(I/I_0)$). В таблице приведены уровни интенсивности звука для различных источников шума.

Таблица

Источник звука	Уровень шума, дБ
Порог слышимости	0
Падение капли (расстояние до источника звука ~1 м)	20
Тихий разговор (~1 м)	40
Легковой автомобиль на асфальте (~5-10 м)	60
Симфонический оркестр	80
Отбойный молоток (~1 м)	100
Мотор самолета (~5 м)	120

Высота звука – качество звука, зависящее от частоты.

Тембр звука – распределение энергии звуковой волны по частотам.

Скорость звука в газах определяется соотношением

$$v = \sqrt{\frac{\gamma RT}{M}},\tag{50.1}$$

где $\gamma = C_p / C_v$ – отношение молярных теплоемкостей. Скорость звука в жидкостях и твердых телах определяется выражением

$$v = \sqrt{\frac{E}{\rho}},\tag{50.2}$$

где *Е* – модуль Юнга, р – плотность вещества. В таблице приведены значения скорости звука в некоторых веществах.

Таблица

Вещество	Скорость звука, м/с
Воздух (0°С)	331
Водород (0°С)	1265
Углекислый газ (0°С)	261
Кислород (0°С)	316
Вода (25°С)	1497
Ртуть (50°С)	1440
Чугун	4500 (2400)